
Strong Scaling of Matrix Multiplication Algorithms and
Memory-Independent Communication Lower Bounds

(Brief Announcement)

Grey Ballard
∗

UC Berkeley
ballard@eecs.berkeley.edu

James Demmel
∗ †

UC Berkeley
demmel@cs.berkeley.edu

Olga Holtz
‡

UC Berkeley and TU Berlin
holtz@math.berkeley.edu

Benjamin Lipshitz
∗

UC Berkeley
lipshitz@berkeley.edu

Oded Schwartz
§

UC Berkeley
odedsc@eecs.berkeley.edu

ABSTRACT
A parallel algorithm has perfect strong scaling if its running
time on P processors is linear in 1/P , including all commu-
nication costs. Distributed-memory parallel algorithms for
matrix multiplication with perfect strong scaling have only
recently been found. One is based on classical matrix multi-
plication (Solomonik and Demmel, 2011), and one is based
on Strassen’s fast matrix multiplication (Ballard, Demmel,
Holtz, Lipshitz, and Schwartz, 2012). Both algorithms scale
perfectly, but only up to some number of processors where
the inter-processor communication no longer scales.

We obtain a memory-independent communication cost
lower bound on classical and Strassen-based distributed-
memory matrix multiplication algorithms. These bounds
imply that no classical or Strassen-based parallel matrix
multiplication algorithm can strongly scale perfectly beyond
the ranges already attained by the two parallel algorithms
mentioned above. The memory-independent bounds and the
strong scaling bounds generalize to other algorithms.

ACM Classification Keywords: F.2.1
ACM General Terms: Algorithms, Design, Perfor-

mance.
Keywords: Communication-avoiding algorithms, Strong

scaling, Fast matrix multiplication

∗Research supported by Microsoft (Award #024263) and In-
tel (Award #024894) funding and by matching funding by
U.C. Discovery (Award #DIG07-10227). Additional sup-
port comes from Par Lab affiliates National Instruments,
Nokia, NVIDIA, Oracle, and Samsung.
†Research is also supported by DOE grants DE-SC0003959,
DE- SC0004938, and DE-AC02-05CH11231.
‡Research supported by the Sofja Kovalevskaja programme
of Alexander von Humboldt Foundation and by the National
Science Foundation under agreement DMS-0635607, while
visiting the Institute for Advanced Study.
§Research supported by U.S. Department of Energy grants
under Grant Numbers DE-SC0003959.

Copyright is held by the author/owner(s).
SPAA’12, June 25–27, 2012, Pittsburgh, Pennsylvania, USA.
ACM 978-1-4503-0743-7/11/06.

1. INTRODUCTION
In evaluating the recently proposed parallel algorithm

based on Strassen’s matrix multiplication [2] and compar-
ing the communication costs to the known lower bounds [3],
we found a gap between the upper and lower bounds for
certain problem sizes. The main motivation of this work
is to close this gap by tightening the lower bound for this
case, proving that the algorithm is optimal in all cases, up
to O(logP) factors. A similar scenario exists in the case of
classical matrix multiplication; in this work we provide the
analogous tightening of the existing lower bound [5] to show
optimality of another recently proposed algorithm [7].

In addition to proving optimality of algorithms, the lower
bounds in this paper yield another interesting conclusion re-
garding strong scaling. We say that an algorithm strongly
scales perfectly if it attains running time on P processors
which is linear in 1/P , including all communication costs.
While it is possible for classical and Strassen-based ma-
trix multiplication algorithms to strongly scale perfectly, the
communication costs restrict the strong scaling ranges much
more than do the computation costs. These ranges depend
on the problem size relative to the local memory size, and
on the computational complexity of the algorithm.

Interestingly, in both cases the dominance of a memory-
independent bound arises, and the strong scaling range ends,
exactly when the memory-dependent latency lower bound
becomes constant. This observation may provide a hint as to
where to look for strong scaling ranges in other algorithms.
Of course, since the latency cost cannot possibly drop be-
low a constant, it is an immediate result of the memory-
dependent bounds that the latency cost cannot continue to
strongly scale perfectly. However the bandwidth cost typi-
cally dominates the cost, and it is the memory-independent
bandwidth scaling bounds that limit the strong scaling of
matrix multiplication in practice. For simplicity we omit
discussions of latency cost, since the number of messages is
always a factor of M below the bandwidth cost in the strong
scaling range, and is always constant outside the strong scal-
ing range.

While the main arguments in this work focus on matrix
multiplication, we present results in such a way that they can
be generalized to other algorithms, including other O(n3)-
based dense and sparse algorithms as in [4] and other fast
matrix multiplication algorithms as in [3].

Our paper is organized as follows. In Section 2.1 we
prove a memory-independent communication lower bound
for Strassen-based matrix multiplication algorithms, and we
prove an analogous bound for classical matrix multiplication
in Section 2.2. We discuss the implications of these bounds
on strong scaling in Section 3 and compare the communica-
tion costs of Strassen and classical matrix multiplication as
the number of processors increases. In Section 4 we discuss
generalization of our bounds to other algorithms. The main
results of this paper are summarized in Table 1.

2. COMMUNICATION LOWER BOUNDS
We use the distributed-memory communication model

(see, e.g., [4]), where the bandwidth-cost of an algorithm
is proportional to the number of words communicated and
the latency-cost is proportional to the number of messages
communicated along the critical path. We will use the no-
tation that n is the size of the matrices, P is the number

of processors, M is the local memory size of each processor,
and ω0 = log2 7 ≈ 2.81 is the exponent of Strassen’s matrix
multiplication.

2.1 Strassen’s Matrix Multiplication
In this section, we prove a memory-independent lower

bound for Strassen’s matrix multiplication of Ω(n2/P 2/ω0)
words, where ω0 = log2 7. We reuse notation and proof tech-
niques from [4]. By prohibiting redundant computations we
mean that each arithmetic operation is computed by exactly
one processor. This is necessary for interpreting edge expan-
sion as communication cost.

Theorem 2.1. Suppose a parallel algorithm performing
Strassen’s matrix multiplication minimizes computational
costs in an asymptotic sense and performs no redundant
computation. Then, for sufficiently large P ,1 some processor

must send or receive at least Ω
(

n2

P2/w0

)
words.

Proof. The computation DAG (see e.g., [4] for formal
definition) of Strassen’s algorithm multiplying square ma-
trices A ·B = C can be partitioned into three subgraphs: an
encoding of the elements of A, an encoding of the elements
of B, and a decoding of the scalar multiplication results to
compute the elements of C. These three subgraphs are con-
nected by edges that correspond to scalar multiplications.
Call the third subgraph DeclgnC, where lgn = log2 n is the
number of levels of recursion for matrices of dimension n.

In order to minimize computational costs asymptotically,
the running time for Strassen’s matrix multiplication must
be O(nω0/P). Since a constant fraction of the flops corre-
spond to vertices in DeclgnC, this is possible only if some

processor performs Θ
(

nω0

P

)
flops corresponding to vertices

in DeclgnC.
By Lemma 10 of [3], the edge expansion of DeckC is given

by h(DeckC) = Ω((4/7)k). Using Claim 5 there (decompo-
sition into edge disjoint small subgraphs), we deduce that

hs(DeclgnC) = Ω

((
4

7

)log7 s
)
, (1)

where hs is the edge expansion for sets of size at most s.
Let S be the set of vertices of DeclgnC that correspond

to computations performed by the given processor. Set

s = |S| = Θ
(

nω0

P

)
. By equation (1), the number of edges

between S and S is

|E(S, S)| = Ω (s · hs(DeclgnC)) = Ω

(
n2

P 2/ω0

)
,

and because DeclgnC is of bounded degree (Fact 9 there)
and each vertex is computed by only one processor, the
number of words moved is Θ(|E(S, S)|) and the result fol-
lows.

2.2 Classical Matrix Multiplication
In this section, we prove a memory-independent lower

bound for classical matrix multiplication of Ω(n2/P 2/3)
words. The same result appears elsewhere in the literature,
under slightly different assumptions: in the LPRAM model

1The theorem applies to any P ≥ 2 with a strict enough
assumption on the load balance among vertices in DeclgnC
as defined in the proof.

[1], where no data exists in the (unbounded) local memo-
ries at the start of the algorithm; in the distributed-memory
model [5], where the local memory size is assumed to be

M = Θ(n2/P 2/3); and in the distributed-memory model [7],
where the algorithm is assumed to perform a certain amount
of input replication. Our bound is for the distributed mem-
ory model, holds for any M , and assumes no specific com-
munication pattern.

Recall the following special case of the Loomis-Whitney
geometric bound:

Lemma 2.2. [6] Let V be a finite set of lattice points in
R3, i.e., points (x, y, z) with integer coordinates. Let Vx be
the projection of V in the x-direction, i.e., all points (y, z)
such that there exists an x so that (x, y, z) ∈ V . Define Vy

and Vz similarly. Let | · | denote the cardinality of a set.

Then |V | ≤
√
|Vx| · |Vy| · |Vz|.

Using Lemma 2.2 (in a similar way to [4, 5]), we can de-
scribe the ratio between the number of scalar multiplications
a processor performs and the amount of data it must access.

Lemma 2.3. Suppose a processor has I words of initial
data at the start of an algorithm, performs Θ(n3/P) scalar
multiplications within classical matrix multiplication, and
then stores O words of output data at the end of the al-
gorithm. Then the processor must send or receive at least
Ω(n2/P 2/3)− I −O words during the execution of the algo-
rithm.

Proof. We follow the proofs in [4, 5]. Consider a dis-
crete n× n× n cube where the lattice points correspond to
the scalar multiplications within the matrix multiplication
A · B (i.e., lattice point (i, j, k) corresponds to the scalar
multiplication aik · bkj). Then the three pairs of faces of the
cube correspond to the two input and one output matrices.

The projections on the three faces correspond to the
input/output elements the processor has to access (and
must communicate if they are not in its local memory).

By Lemma 2.2, and the fact that
√
|Vx| · |Vy| · |Vz| ≤√

1
6
(|Vx|+ |Vy|+ |Vz|)3, the number of words the processor

must access is at least 3
√

6 |V |2/3 = Ω(n2/P 2/3). Since the
processor starts with I words and ends with O words, the
result follows.

Theorem 2.4. Suppose a parallel algorithm performing
classical dense matrix multiplication begins with one copy
of the input matrices and minimizes computational costs in
an asymptotic sense. Then, for sufficiently large P ,2 some

processor must send or receive at least Ω
(

n2

P2/3

)
.

Proof. At the end of the algorithm, every element of the
output matrix must be fully computed and exist in some
processor’s local memory (though multiples copies of the
element may exist in multiple memories). For each output
element, we designate one memory location as the output
and disregard all other copies. For each of the n2 designated
memory locations, we consider the n scalar multiplications
whose results were used to compute its value and disregard
all other redundantly computed scalar multiplications.

In order to minimize computational costs asymptotically,
the running time for classical dense matrix multiplication

2The theorem applies to any P ≥ 2 with a strict enough
assumption on the load balance.

Classical Strassen
Memory-dependent

Ω
(

n3

P
√
M

)
Ω
(

nω0

PMω0/2−1

)
lower bound

Memory-independent
Ω
(

n2

P2/3

)
Ω
(

n2

P2/ω0

)
lower bound

Perfect strong
P = O

(
n3

M3/2

)
P = O

(
nω0

Mω0/2

)
scaling range

Attaining algorithm [7] [2]

Table 1: Bandwidth-cost lower bounds for matrix
multiplication and perfect strong scaling ranges.
The classical memory dependent bound is due to [5],
and the Strassen memory dependent bound is due
to [3]. The memory-independent bounds are proved
here, though variants of the classical bound appear
in [1, 5, 7].

must be O(n3/P). This is possible only if at least a con-

stant fraction of the processors perform Θ
(

n3

P

)
of the scalar

multiplications corresponding to designated outputs.
Since there exists only one copy of the input matrices

and designated output–O(n2) words of data–some proces-
sor which performs Θ(n3/P) multiplications must start and
end with no more than I + O = O(n2/P) words of data.
Thus, by Lemma 2.3, some processor must read or write
Ω(n2/P 2/3)−O(n2/P) = Ω(n2/P 2/3) words of data.

3. LIMITS OF STRONG SCALING
In this section we present limits of strong scaling of ma-

trix multiplication algorithms. These are immediate impli-
cations of the memory independent communication lower
bounds proved in Section 2. Roughly speaking, the memory-
dependent communication-cost lower-bound is of the form
Ω (f(n,M)/P) for both classical and Strassen matrix mul-
tiplication algorithms. However, the memory independent
lower bounds are of the form Ω (f(n,M)/P c) where c < 1
(see Table 1). This implies that strong scaling is not pos-
sible when the memory-independent bound dominates. We
make this formal below.

Corollary 3.1. Suppose a parallel algorithm performing
Strassen’s matrix multiplication minimizes bandwidth and
computational costs in an asymptotic sense and performs
no redundant computation. Then the algorithm can achieve

perfect strong scaling only for P = O
(

nω0

Mω0/2

)
.

Proof. By [3], any parallel algorithm performing ma-
trix multiplication based on Strassen moves at least

Ω
(

nω0

PMω0/2−1

)
words. By Theorem 2.1, a parallel algorithm

that minimizes computational costs and performs no redun-

dant computation moves at least Ω
(

n2

P2/ω0

)
words. This

latter bound dominates in the case P = Ω
(

nω0

Mω0/2

)
. Thus,

while a communication-optimal algorithm will strongly scale
perfectly up to this threshold, after the threshold the com-
munication cost will scale as 1/P 2/ω0 rather than 1/P .

Corollary 3.2. Suppose a parallel algorithm performing
classical dense matrix multiplication starts and ends with
one copy of the data and minimizes bandwidth and compu-
tational costs in an asymptotic sense. Then the algorithm

can achieve perfect strong scaling only for P = O
(

n3

M3/2

)
.

pmin pmin
t0/2 pmin

3/2

(B
an

dw
id

th
 c

os
t)

x
p

p

Classical
Strassen-like

Figure 1: Bandwidth costs and strong scaling of
matrix multiplication: classical vs. Strassen-based.
Horizontal lines correspond to perfect strong scal-
ing. Pmin is the minimum number of processors re-
quired to store the input and output matrices.

Proof. By [5], any parallel algorithm performing matrix

multiplication moves at least Ω
(

n3

P
√
M

)
words. By Theo-

rem 2.4, a parallel algorithm that starts and ends with one
copy of the data and minimizes computational costs moves

at least Ω
(

n2

P2/3

)
words. This latter bound dominates in

the case P = Ω
(

n3

M3/2

)
. Thus, while a communication-

optimal algorithm will strongly scale perfectly up to this
threshold, after the threshold the communication cost will
scale as 1/P 2/3 rather than 1/P .

In Figure 1 we present the asymptotic communication
costs of classical and Strassen-based algorithms for a fixed
problem size as the number of processors increases. Both
of the perfectly strong scaling algorithms stop scaling per-
fectly above some number of processors, which depends on
the matrix size and the available local memory size.

Let Pmin = Θ
(

n2

M

)
be the minimum number of proces-

sors required to store the input and output matrices. By
Corollaries 3.1 and 3.2 the perfect strong scaling range is

Pmin ≤ P ≤ Pmax where Pmax = Θ(P
3/2
min) in the classical

case and Pmax = Θ(P
ω0/2
min) in the Strassen case.

Note that the perfect strong scaling range is larger for the
classical case, though the communication costs are higher.

4. EXTENSIONS AND OPEN PROBLEMS
The memory-independent bound and perfect strong scal-

ing bound of Strassen’s matrix multiplication (Theorem 2.1
and Corollary 3.1) apply to other Strassen-like algorithms,
as defined in [4], with ω0 being the exponent of the total
arithmetic count, provided that DeclgnC is connected. The
proof follows that of Theorem 2.1 and of Corollary 3.1, but
uses Claim 18 of [3] instead of Fact 9 there, and replaces
Lemma 10 there with its extension.

The memory-dependent bound of classical matrix multi-
plication of [5] was generalized in [4] to algorithms which
perform computations of the form

Mem(c(i, j)) = fij(gijk(Mem(a(i, k)),Mem(b(k, j)))), (2)

where Mem(i) denotes the argument in memory location i
and fij and gijk are functions which depend non-trivially on
their arguments (see [4] for more detailed definitions).

The memory-independent bound of classical matrix mul-
tiplication (Theorem 2.4) applies to these other algorithms
as well. If the algorithm begins with one copy of the input
data and minimizes computational costs in an asymptotic
sense, then, for sufficiently large P , some processor must

send or receive at least Ω
((

G
P

)2/3 − D
P

)
words, where G is

the total number of gijk computations and D is the number
of non-zeros in the input and output. The proof follows that
of Lemma 2.3 and Theorem 2.4, setting |V | = G (instead of
n3), replacing n3/P with G/P , and setting I+O = O(D/P)
(instead of O(n2/P)).

Algorithms which fit the form of equation (2) include LU
and Cholesky decompositions, sparse matrix-matrix mul-
tiplication, as well as algorithms for solving the all-pairs-
shortest-paths problem. Only a few of these have parallel
algorithms which attain the lower bounds in all cases. In sev-
eral cases, it seems likely that one can prove better bounds
than those presented here, thus obtaining a stricter bound
on perfect strong scaling.

We also believe that our bounds can be generalized to QR
decomposition and other orthogonal transformations, fast
linear algebra, fast Fourier transform, and other recursive
algorithms.

5. REFERENCES
[1] Aggarwal, A., Chandra, A. K., and Snir, M.

Communication complexity of PRAMs. Theoretical
Computer Science 71, 1 (1990), 3 – 28.

[2] Ballard, G., Demmel, J., Holtz, O., Lipshitz, B.,
and Schwartz, O. Communication-optimal parallel
algorithm for Strassen’s matrix multiplication, 2012.
Submitted to SPAA.

[3] Ballard, G., Demmel, J., Holtz, O., and
Schwartz, O. Graph expansion and communication
costs of fast matrix multiplication. In SPAA ’11:
Proceedings of the 23rd Annual Symposium on
Parallelism in Algorithms and Architectures (New
York, NY, USA, 2011), ACM, pp. 1–12.

[4] Ballard, G., Demmel, J., Holtz, O., and
Schwartz, O. Minimizing communication in numerical
linear algebra. SIAM J. Matrix Analysis Applications
32, 3 (2011), 866–901.

[5] Irony, D., Toledo, S., and Tiskin, A.
Communication lower bounds for distributed-memory
matrix multiplication. J. Parallel Distrib. Comput. 64,
9 (2004), 1017–1026.

[6] Loomis, L. H., and Whitney, H. An inequality
related to the isoperimetric inequality. Bulletin of the
AMS 55 (1949), 961–962.

[7] Solomonik, E., and Demmel, J.
Communication-optimal parallel 2.5D matrix
multiplication and LU factorization algorithms. In
Euro-Par ’11: Proceedings of the 17th International
European Conference on Parallel and Distributed
Computing (2011), Springer.

